
EBSP: Evolving Bit Sparsity Patterns for Hardware-Friendly
Inference ofQuantized Deep Neural Networks

Fangxin Liu1,2, Wenbo Zhao1, Zongwu Wang1, Yongbiao Chen1, Zhezhi He1, Naifeng Jing1,
Xiaoyao Liang1 and Li Jiang1,2,3*

1Shanghai Jiao Tong University, 2Shanghai Qi Zhi Institute
3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

ABSTRACT
Model compression has been extensively investigated for support-
ing efficient neural network inference on edge-computing plat-
forms due to the huge model size and computation amount. Recent
researches embrace joint-way compression across multiple tech-
niques for extreme compression. However, most joint-way methods
adopt a naive solution that applies two approaches sequentially,
which can be sub-optimal, as it lacks a systematic approach to
incorporate them.

This paper proposes the integration of aggressive joint-way com-
pression into hardware design, namely EBSP. It is motivated by 1)
the quantization allows simplifying hardware implementations; 2)
the bit distribution of quantized weights can be viewed as an inde-
pendent trainable variable; 3) the exploitation of bit sparsity in the
quantized network has the potential to achieve better performance.
To achieve that, this paper introduces the bit sparsity patterns to
construct both highly expressive and inherently regular bit distribu-
tion in the quantized network. We further incorporate our sparsity
constraint in training to evolve inherently bit distributions to the
bit sparsity pattern. Moreover, the structure of the introduced bit
sparsity pattern engenders minimum hardware implementation un-
der competitive classification accuracy. Specifically, the quantized
network constrained by bit sparsity pattern can be processed using
LUTs with the fewest entries instead of multipliers in minimally
modified computational hardware. Our experiments show that com-
pared to Eyeriss, BitFusion, WAX, and OLAccel, EBSP with less
than 0.8% accuracy loss, can achieve 87.3%, 79.7%, 75.2% and 58.9%
energy reduction and 93.8%, 83.7%, 72.7% and 49.5% performance
gain on average, respectively.

1 INTRODUCTION
Deep neural network (DNN) models have been designed to solve
real-world problems and have achieved significant success in many
application domains [16, 22]. However, due to the ever-increasing
model size of DNNs, the memory and computation overhead have
increased dramatically, making the deployment on embedded and
edge devices difficult. For instance, the latest DNN models [7, 13]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530660

contain trillions of parameters and requires GFLOPs (giga floating-
point operations) of computations in a single inference, making it
a challenging task to perform on-device inference.

To address this challenge, the resource-constrained edge com-
puting platforms require two crucial supports. The first one is the
specialized hardware acceleration for DNN inference. For exam-
ple, EIE [12] utilizes sparse neural network models, while requires
additional hardware overhead to represent the sparse data format.
Laconic [23] tries to optimize the design of multipliers based on
Booth coding, which converts inputs into a sequence of signed
terms and sequentially multiplies and accumulates them.

The second is the model compression technique, such as network
sparsification [11] and network quantization [14], which are widely
used for inference. To be specific, sparsification makes network
sparse, quantization reduces network precision and both reduce
the required memory bandwidth. Among them, non-uniform quan-
tization method, represented by the deep compression [7], applies
k-means to cluster the weights, and the quantized values are de-
noted as indexes. Meanwhile, power-of-2 based quantization (e.g.,
SP2 [3], AFP [17]) maps the weight values to the exponential space,
and then simplifies the multiplication operation into shift operation.

In spite of the significant advances, we identify three challenges
for existing compression techniques: 1) quantization methods focus
on improving the compression rate of ultra low-precision DNNmod-
els, resulting in significant accuracy losses, for example, > 5% under
binary and > 2% for ternary quantization [7]; 2) generally, spar-
sification methods can achieve higher performance with greater
compression than quantization methods. However, major draw-
backs are the additional indexing overhead for addressing non-zero
elements and irregular access/execution patterns [11]; 3) sparsifica-
tion or ultra low-precision quantization methods always introduce
ancillary overheads in the circuit or architecture design, which is
still complex and implementation-unfriendly [11, 12].

This paper focuses on the DNN compression technique, which
becomes imperative to the DNN hardware acceleration, especially
on FPGA and ASIC platforms [7]. Thus, we revisit the quantization
process from a new angle of bit-level sparsity: the reduction of
the precision of an operand can be taken as forcing one or more
bits among the operand to be zero, where a lower significant bit is
more likely to be zero. Alternatively, quantization can be viewed
as increasing bit-level sparsity among the operand. By considering
the distribution of bits in the model parameters, we propose the co-
design method where the hardware-friendly sparsity patterns are
formed under low-cost constraints and enjoy the benefits of quan-
tized DNNs with slight hardware modification. Our contributions
can be outlined as follows:
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• We propose a soft quantization scheme that evolves inher-
ently regular bit-sparsity patterns in training and achieves
an accuracy that matches the high bit-width quantization.

• We design the Look-Up Table (LUT) based approach for ac-
celerating the DNN inference, which effectively incorporates
bit sparsity pattern and quantization for performance gains
while reducing the energy consumption of multiplication.

• We describe the minimum required modifications and execu-
tion flow on the hardware platform to support such scheme
effectively.

2 BACKGROUND AND MOTIVATION
2.1 Network Quantization
Quantization algorithms compress the network by reducing the
number of bits required for weight and activation. Representative
quantization methods can be categorized into two classes:
1) Uniform quantization, which is one of the most widely-used
quantization scheme, include binary, ternary, and fixed-point [14].
Binary and ternary quantization uses extremely low bit-width to
represent DNN models, that is, 1-bit (-1, +1) for binary quantization
and 2-bit (-1, 0, +1) for ternary quantization. Although binary and
ternary quantization can significantly reduce the operand preci-
sion and simplify the hardware implementation, it introduces a
non-negligible accuracy loss (e.g., > 5% accuracy drop for binary).
In contrast, as represented by INT8 [14] and LSQ [8], fixed-point
quantization schemes use modest bit-width to achieve comparable
accuracy as the original model. Weights and activations are quan-
tized to the nearest integer up to a scaling factor that is shared
through all the weights or activations in the same layer:

�̂� = 𝛼 · 𝑐𝑙𝑖𝑝 (𝑟𝑜𝑢𝑛𝑑 (𝑤/𝛼),−2𝑚−1+1, 2𝑚−1−1), (1)

where 𝑐𝑙𝑖𝑝 (𝑥,max,min) clamps the value 𝑥 into range [max,min]
and �̂� is the quantized value of𝑤 with𝑚-bit fixed-point quantiza-
tion.
2) Non-uniform quantization, which uses the distribution of weights
and activations. One way is to cluster weights into several groups [7,
11]. However, such method didn’t bring computation benefits, since
the cluster centers are still stored as floating numbers. Others are
power-of-2 based methods that quantize weights to power-of-2s
up to a scaling factor [3, 17]. These methods utilize the fact that
weights and activations have a denser distribution near zero. Thus,
they can replaces the expensive multiplications by cheap shifting
operations. Although power-of-2 quantization can simplify the
hardware implementation by eliminating multiplication, it cannot
improve the accuracy by increasing bit-width as uniform quanti-
zation. This is because the interval between quantization levels
increases exponentially with bit-width, resulting in finer resolution
near the mean with increasing the bit-width while the tails (weights
with large value) still remain coarse.

2.2 DNN Accelerators for Network
Sparsification and Quantization

General network sparsification and quantization are widely used
for inference. To be specific, sparsification reduces the number of
operands, and quantization reduces the bitwidth of the data flowing
through a neural network model. SnaPEA [1] exploits activation

sparsity to shorten the computation time of the convolution opera-
tion, where the data format is still the 16-bit fixed-point number.
WAX [10] uses a deeply distributed memory hierarchy, leads to
data being moved with small overhead, and quantizes operands
from 32-bit to 8-bit. BitFusion [24] proposes to execute quantized
neural network models. OLAccel [20] is the mixed-precision accel-
erator that utilizes quantization with 4-bit and 16-bit MACs. These
designs mainly cater to the general single-way network sparsifi-
cation or quantization. Consequently, their architectures struggle
for peak performance because it is difficult to find a perfect fitted
compression method to incorporate sparsity in quantization.

Our work shares conceptual similarities with prior works on
quantization, however, it distinguishes itself by deriving the pro-
posed bit sparsity pattern to minimize hardware implementation.
Such a sparsity pattern is evolved through training to yield reg-
ular bit distributions, rather than imposing an overall bit-width
constraint by quantizing the model. As a result, EBSP can deliver
a competitive accuracy on par with high-precision quantization,
while the forced sparsity constraint keeps the hardware implemen-
tation overhead at a minimum level.
3 ALGORITHM FOR QUANTIZATIONWITH

BIT SPARSITY PATTERN
In this section, we propose a novel quantization scheme combined
with the hardware-friendly bit sparsity pattern, which enjoys the
non-multiplication operations for the DNN inference while achiev-
ing negligible inference accuracy loss.
3.1 Coupling Quantization with Hardware
The most success of the quantization with low bit-width (e.g.,
HAQ [7], DeepCompression [11], and power-of-2 quantization [3])
can be largely attributed to introducing ancillary overheads, such
as indexes. Hence, it is not trivial to quantize neural networks with
low bit-width for both inputs and weights without indexes aiding
or accuracy loss during the inference. In this work, EBSP aims at
eliminating multiplication operations in the (quantized) DNN in-
ference models (as the low-bit-width quantization scheme), and at
the same time, is designed to address the non-negligible accuracy
loss of quantization with low bit-width. The proposed hardware-
friendly quantization scheme incorporating the bit sparsity pattern
can be considered as a variant of the non-uniform quantization. It
is possible to merge the quantization and sparsification constraints
together.

Since multiplication operation is the most widely used compute
operation in the DNN workloads. Thus, we attempt to design a
novel hardware-friendly quantization method that takes full ad-
vantage of LUTs to replace multipliers, considering LUTs can be
reconfigured to support different bit-width and the reduced operand
precision enables fewer LUT entries [9, 21]. This approach mini-
mally increases the memory area by introducing only hardware
that assists in combining LUT entries to realize multiplications.

The LUT-based scheme inevitably face the problem that there is
an excessive number of entries to cover all the possible combina-
tions of weights and activations. The number of entries in the LUT
plays a significant role in determining the system performance. For
example, to compute a multiplication with INT8 quantization in
one cycle, 65,536 (28 × 28 combinations) entries are needed in the
LUT. If the partial sum result is saved with single precision (16-bit),
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Figure 1: Quantization with bit sparsity pattern and weight update
in training.

128 MB of momery is needed to store them, which makes the design
very impractical. In order to further improve the LUT-based scheme
efficiency, we carefully optimize the LUT overhead in conjunction
with the quantization method.

Inspired by the fact that only the bits from the most significant
bit of a number takes parts in the computation, and the leading ‘0’
bits are redundant, we introduce an innovative co-design paradigm
of compression and hardware to enable fine-grained bits exploited
at a low cost and enjoy the benefits of the quantized DNNs. This
method quantizes weights and activations into adaptive floating-
point numbers. Specifically, each layer shares a shift factor 𝑘 , and
each value has its exponent part 𝑒 and mantissa part𝑚. In such
case, each value can be represented as

𝑥 = 2𝑘
(
2𝑒 ·

(
1 +𝑚 · 2−𝑛man

) )
= 2𝑘

(
2𝑒 ·𝑀

)
(2)

where 𝑛man is the bit-width of the mantissa𝑚. Given a weight𝑤
and an activation 𝑎, the quantized multiplication of them can be
written as

𝑎 ·𝑤 =
[
2𝑘𝑎

(
2𝑒𝑎 ·𝑀𝑎

) ]
×
[
2𝑘𝑤

(
2𝑒𝑤 ·𝑀𝑤

) ]
= 2𝑘𝑎+𝑘𝑤 (2𝑒𝑎+𝑒𝑤 · (𝑀𝑎𝑀𝑤))

(3)

From Eq. (3), we see that the only need to implement the mul-
tiplication of 𝑀𝑎 and 𝑀𝑤 . Then, the result can be derived after
element-wise shifting by 𝑒𝑎 + 𝑒𝑤 and the layer-wise shifting by
𝑘𝑎 + 𝑘𝑤 . Thus, we use LUTs to realize the computation of𝑀𝑎 and
𝑀𝑤 , with 2𝑛𝑎man+𝑛𝑤

man entries, much fewer than the computation of
whole𝑤 and 𝑎. Then, we introduce the evolving sparsity pattern
in quantization to further decrease the bit-width of 𝑀𝑎 and 𝑀𝑤 ,
which lead to yet further computational benefits.

3.2 Evolving Sparsity Pattern in Quantization
We propose a novel integrated training method that evolves sparsity
patterns by enforcing the constraint on the bit distribution (called
bit sparsity constraint) by performing soft quantization in each
training iteration. We divide the training process into three phases
sequentially according to the execution order: masking, forward
passing, and backward passing, respectively. During the masking
phase, the weight matrix is quantized to the target bit-width and
imposes bit sparsity constrain in the bits within the target bit-width.
As shown in Fig. 1, bit sparsity constraint is that a maximum of
𝑠 = 3 consecutive ‘1’s exists in the bits within the weights at a
given bit-width. Next, the forward pass is performed using the
quantized weight matrix with the bit sparsity constraint, which can
be formulated as Eq. (2) and Eq. (3)

In the masking phase, the position of the most significant bit is
located and denoted as the exponent part 𝑒 of the quantized weight.
Then, the bit mask is generated that covers at most 𝑠 ‘1‘ bits after

the most significant bit, the position 𝑝 = 𝑒 to 𝑒 + 𝑠 − 1 (𝑝 from 5 to 1
in Fig. 1). Then, the quantized weight is generated by the bit-wise
multiplication of the original weight and the mask. In the forward
phase, the original weight matrices are quantized prior to passing
through masking. The layer computations are carried out with the
bit sparsity pattern of the quantized weight matrices.

In the backpropagation phase, we aim at training the weights to-
wards the quantization sparsity pattern while maintaining network
accuracy. Therefore, we add a normalization term

𝜆

2
∑︁

·(𝑤 −𝑤𝑞)2 · 2−𝑒 (4)

to the loss to decay the weights toward the quantized one. Then,
the gradient will be calculated as

𝜕𝐿′

𝜕𝑤
=

𝜕𝐿

𝜕𝑤
+ 𝜆(𝑤 −𝑤𝑞) · 2−𝑒 (5)

For large weights whose exponent 𝑒 is large, the gradient is still
focused on the first term to make sure that the weight is updated in
the direction to reduce the loss and increase accuracy. On the other
hand, for small weights whose exponent 𝑒 is small, the second term
will account for a larger part in the gradient, guiding them towards
the quantized value and reducing the quantization error.

In addition, we formulate the cost C
(
𝑁𝑞, 𝑛exp

)
in a bit manner:

the multiplication in EBSP need 2𝑛𝑎man+𝑛𝑤
man LUT entries, which

also determines the bits for adders (more LUT entries, the larger
the number of bits for adders). Therefore, we combine the cost
function Eq. (6) with accuracy as the overall objective of training a
DNN model based on ADMM-regularized optimization [19]:

C = 2𝑛
𝑎
man+𝑛𝑤

man (6)

L = L(𝑊 1:𝐿
𝑞 ) + 𝛼

𝐿∑︁
𝑙=1

C𝑙 (7)

whereL(𝑊 1:𝐿
𝑞 ) is the original entropy loss evaluated with the quan-

tized weights𝑊𝑞 , 𝐿 denotes the number of layers in the DNNmodel,
𝛼 is a hyperparameter controlling the balance between the entropy
and cost term. As a result, our evolving bit sparsity pattern for
incorporating sparsity in quantization offers a viable path towards
efficient hardware inference will be discussed in Section 4.1.
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Figure 2: Block diagram of the PE implementation in EBSP.

4 ARCHITECTURE FOR QUANTIZATION
WITH BIT SPARSITY PATTERN

In this section, we discuss the efficient LUT-based PE implementa-
tion, the organization of EBSP, and its execution flow support for
DNN workloads incorporated in the proposed EBSP architecture.



3

6

7

4

4

8

12

2

3

6

3

1

2

3

7

9

4

8
Activation

Matrix
Weight
Matrix

Initialization WritebackComputation

36 +12 = 48

48 +12 = 60

36

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Op (3,6) locate 
the signal: 1,1

Match the LUT: 
1,1 = 9

Psum send to 
Adder Tree

Op (4,3)
locate the 
power: 2,1

Add the power: 
2+1=3

3 shift by (3-1): 
12

Op (4,3)
locate the 
signal: 0,1

Match the LUT: 
0,1 = 3

Write the 
output Reg.

Op (12,1)
locate the 
power: 3,0

Add  the power: 
3+0=3

3 shift by (3-1): 
12

Psum send to 
Adder Tree

Op (12,1)
locate the 
signal: 1,0

Match the LUT: 
0,1 = 3

Load the 
parameter 

matries

Fetch input 
operands 

(3,4,12) and 
(6,3,1)

Op (3,6)
locate the 
power: 1,2

Add the power: 
1+2=3

9 shift by (3-1): 
36

Psum send to 
Adder Tree

(b) Illustration of the EBSP that runs each modules. 

(a) execution pipeline of the Computation Optimization Step

PE Array
SFU 

(Quantizer)

Weight Buf.

In
p

u
t 

B
u

f.

A
cc

u
m

u
l

at
o

r

O
u

tp
u

t 
B

u
f.

SF
U

Step 1:
Quantization

Step 2:
Computation Optimization

Step 3:
Generate Activation

Figure 3: The data computation for convolution. (a) An example of execution pipeline with the EBSP-based computation step
includes initialization, computation, and writeback phase. The blue blocks indicate steering logic, while the green blocks
indicate arithmetic logic. (b) Illustration of the EBSP that runs various modules for computation.

4.1 Non-Multiplication Engine (NME)
In this section, we will implement the non-multiplication engine
that can efficiently quantize the given weight and use LUT instead
of the multiplier. As is shown in Fig. 2, the processing unit (PE)
is designed with two components: steering logic and arithmetic
logic. In detail, the steering logic is composed of leading one de-
tector (LOD) that dynamically locate the most significant ‘1’ bit
and a multiplexer that extracts significant digits to send to the
LUT. In contrast, based on the bit sparsity pattern, arithmetic logic
is composed of a LUT with few entries, adder, and shifter (e.g.,
barrel shifter) that implements the multiplication of Eq. (3). Take
the 5-bit quantization as an example, 1-bit sign, 2-bit exponent,
2-bit mantissa for weight and 2-bit exponent, 3-bit mantissa for
activation (0-bit sign since ReLU activation function is used). First,
𝑒𝑎 + 𝑒𝑤 , the 2-bit addition, is realized by adder; meanwhile, EBSP
uses LUTs to realize𝑀𝑎𝑀𝑤 . Finally, the output of the LUT through
the shifter, which is shifted by 𝑒𝑎 + 𝑒𝑤 bits yield by the adder. In
this way, we can achieve the circuit-implementation-friendly for
the multiplication. In addition, our method has a better adaptability
since LUT entries only fix the bit-width of mantissa and different
bit-widths of exponents can use the same LUT. In this example, only
22+3 = 32 LUT entries are needed to stored pre-calculated constant,
which is quite impressive for implementation. Our architecture’s
other benefit is not restricting designers from using their preferred
design as the smaller core multiplier. If a more efficient multiplier
can be designed in the future, the arithmetic logic can be replaced.
The much smaller arithmetic logic justifies the addition of steering
logic, which provides significant overall power and area savings
than the exact multiplier.

4.2 Execution Flow with NME
With our NME, we achieve accelerating the quantized NN through
minor hardware modifications to boost hardware utilization and
inference performance significantly, as explained in Fig. 3:

Step 1: Data preparing (Quantization). At the beginning of
the EBSP run, the quantized weights are loaded into an on-chip

buffer, i.e., the weight buffer as shown in Fig. 3 (b). We use the
EBSP quantized data throughout the execution flow, where the
quantized data consists of the exponent and mantissa, as expressed
in Eq. (3). Therefore, the activation of each layer will also be in the
same format. To use these results as input activations and multiply
themwith the low precision weights, we need first to quantize them
using the quantizer and then store them in the input buffer.

Step 2: Computation Optimization. As shown in the Fig. 3 (b),
after quantization, the low precision inputs and weights are stored
in the input buffer and the weight buffer. We then perform efficient
MAC computations using the PE array. Fig. 3(a) shows a detailed
illustration of the EBSP-based computation steps with an example.
The matrix multiplication operation with once superposition of ad-
jacent exponents. In the initialization phase, the parameter matrix
(Cycle 0) is loaded, and the operands involved in the calculation (Cy-
cle 1) are fetched. Since the initialization is performed only once at
the beginning, which cause the small overhead of fetching operands,
and only the cycles of computation is proportional to the number
of multiplications. In the next six cycles (computation phase), three
shifts, three additions and two accumulations are performed to
produce an element of the output matrix. In Cycle 2, according to
steering logic, the most significant digit ‘1’ is located and combined
with our quantization method to obtain the power and the signal
whether the superposition is needed. In Cycle 3, the addition is
performed since the operands of multiplication are simplified to
power-of-2. In Cycle 4, a left-shift operation is performed on the
result of matching the LUT according to the adder’s output. In
Cycle 5, the psum is fed into the adder tree for accumulation. Then,
the subsequent operands are repeated for Cycle 2-4. The output
will be written back in Cycle 8. This execution pipeline continues
until the matrix multiplication is completed.

Step 3: Generate Activation. The results of the PE array are
accumulated with the partial sum and sent to the Special Function
Unit (SFU) to calculate the final output. The SFU performs activation
functions (e.g., ReLU), pooling functions (e.g., average pooling and
max pooling), or even other operations.
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Figure 4: Comparison of DNN accuracy and percentage of bit-width for different networks.

It is worth noticing that other quantization methods such as
INT8 quantization [14] are also applicable to our EBSP scheme,
which will be discussed in Section 5.2.

5 EXPERIMENTS
5.1 Experimental Methodology

1) Validation on NN Accuracy. We evaluate the quantization
framework on CIFAR-10 [15] and ImageNet [6] datasets on widely
applied CNNnetworks for image classification, includingAlexNet [16]
VGG-16 [7], ResNet-18, ResNet-50 [13], and MobileNet-v2 [22]. The
EBSP algorithm is implemented by PyTorch. We use pre-trained
network models from Pytorch Model Zoo as the basis for EBSP
algorithm. The network structure is derived from the model in the
torchvision [18]. We reconstruct the convolutional layers, which
insert the quantization process for the weights and activations be-
fore the built-in convolution function call. The experiment runs on
CUDA 10.2 environment with Tesla V100 GPU.

Table 1: Configurations of different accelerators under 45-nm
standard-cell library.

Eyeriss [4] BitFusion [24] WAX [10] OLAccel [20] EBSP
Bit-width 16-bit 4-bit 8-bit 4&16-bit 6-bit (3)†

Data Format Integer Integer Fixed-point Integer Integer
# PEs 224 3168 102 2499 4818

Area (mm2) 0.32 0.32 0.32 0.32 0.32
† this denotes the length of bit sparsity pattern, which determines LUT entries.

2) Modeling Accelerator Architecture. Since the Eyeriss architec-
ture [4] is widely used as a baseline in many accelerators [10, 23]
and only relevant results are provided in these works, we also
choose it as a baseline. Meanwhile, for a fair comparison, we use
the same global buffer capacity (5 MB) and memory bandwidth
for all these accelerators and use CACTI [2] to estimate it that can
satisfy our design goals. In addition, we use the 45nm technology
library and Synopsys Design Compiler [5] to study the area and
energy of the PE unit that we designed with various bit-width
and data-format. Tab. 1 shows the configuration of all accelerators
in our experiments. Under 500MHz PE frequency, we verify that
the required memory bandwidth is much smaller than the typical
memory bandwidth provided by DDR3. Thus, we can sustain a
non-blocking convolution. Meanwhile, the EBSP architecture can
be extended to a larger number of PEs under the same area budget.

5.2 Experimental Results
1) Accuracy, Performance and Energy Consumption. Fig. 4 first

shows the DNN accuracy for the five networks with CIFAR-10 and
ImageNet datasets. Taking ResNet-50 as an example, compared to

Eyeriss, our EBSP shows nearly no accuracy loss for CIFAR-10 com-
pared to Eyesiss (full INT16), BitFusion (full INT8) and WAX (full
fixed-point 8-bit), and a 2.2% accuracy improvement over the OLAc-
cel. For ImageNet, our EBSP shows a 0.31% accuracy loss compared
to Eyesiss, WAX and BitFusion and a significant 4.32% accuracy
improvement over OLAccel. Fig. 4 also shows the percentage of
bitwidth used in the computation for these designs. Both EBSP and
OLAccel take full advantage of low-bit quantization, where the
computation in our EBSP is done with LUT and is realized by the
bit sparsity pattern. However, OLAccel performs quantization with
fixed across all the layers and datasets. In contrast, EBSP is evolved
to generate the bit sparsity pattern in the quantization and takes
into account the cost of LUTs and network accuracy in training, so
that the number of bits used for weight and activation values can
vary from layer to layer. As demonstrated in the up-to-date compact
MobileNet-v2 which has a much smaller parameter size, our EBSP
is more robust for preserving DNN accuracy (0.78% loss) with 7% of
4-bit, 51% of 5-bit and 42% of 6-bit percentage than OLAccel (5.4%
loss) with 85% of 4-bit percentage.
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Figure 5: Energy breakdown of various networks.

Fig. 5 shows the the energy consumption of various accelerators
for the five networks, which is decomposed into DRAM, global
buffer and processing cores (Core). For example, in ResNet-50, com-
pared to Eyeriss, BitFusion, WAX and OLAccel, EBSP consumes
87.3%, 79.7%, 75.2% and 58.9% less energy, respectively. The energy
reduction of EBSP against other accelerators is mainly due to the
simplification and reduced precision on PEs, and the resultant nar-
rower bit-width data transferred between DRAM and global buffer.

0

0.2

0.4

0.6

0.8

1

ResNet-18 ResNet-50 AlexNet VGG-16 MobileNet-V2

Eyeriss BitFusion WAX OLAccel EBSP

Figure 6: Performance of various DNNs.

Fig. 6 shows the total execution cycles on different accelerators
for the five networks, which are all normalized to Eyeriss. Still tak-
ing ResNet-50 as an example, compared to Eyeriss, EBSP achieves



nearly 93% performance improvement because EBSP mostly uses
simplified PE to realize the MACs for DNNs. However, only EBSP
considers fine-grained bit sparsity in the quantization, EBSP achieves
the highest throughput ( 93.87% performance improvement com-
pared with Eyeriss) among these designs. Compared to OLAccel
with 16-bit for the first and last layer and 4-bit for the rest layers,
EBSP can achieve average 49% performance improvement thanks to
the larger number of PEs under the same area budget (see Table 1)
in our scheme. Note that, for benchmark tests like ImageNet, EBSP
delivers a much larger speedup with only 0.42% accuracy loss than
OLAccel achieved at the cost of about 5% accuracy loss.
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Figure 7: Analyzation of the pattern length. m-bit (n) denotes the
value is quantized to𝑚-bit with the bit sparsity pattern of length 𝑛.

2) Design Space Exploration. Fig. 7 studies the impact of pattern
length on ImageNet. This plot reports the average accuracy loss and
energy across the five networks. Note that EBSP has the capability
of tuning the length of bit sparsity pattern to sustain the same
accuracy levels as Eyesiss, while gaining notable energy efficiency.
Specifically, EBSP incurs average 0.31% accuracy loss compared to
Eyesiss, BitFusion and WAX, while OLAccel has 4.3% accuracy loss
instead. In terms of energy efficiency, EBSP with different pattern
length reduces the energy consumption by an average of 87% com-
pared to Eyeriss. Moreover, longer pattern length leads to higher
DNN accuracy, but it will increase the energy consumption. From
this plot, we find that quantized DNNs with bitwidth of 5-bit and
pattern length of 3, EBSP achieves an optimal point (0.13% accuracy
loss with 97.3% energy reduction over Eyeriss) on ImageNet.

Fig. 8 shows the impact of bit sparsity pattern on INT8 for ResNet-
50.We sweep pattern length from 2 to 7. Generally, a shorter pattern
length means fewer LUT entries and allows for less energy con-
sumption, but it will degrade the network accuracy. In Fig. 7, we
normalize the energy efficiency to Eyeriss. We find that INT8 with
the pattern length of 7, the energy efficiency is inferior to that of
the direct INT8 scheme (i.e., BitFusion), which is caused by the
excessive number of LUT entries. However, as the pattern length
decreases, the energy efficiency increases. We see that the bit spar-
sity pattern of the length of 4 and 5 will be most beneficial for the
energy-saving with almost no accuracy loss (0.53% loss for length
of 4 and 0.27% loss for length of 5).

6 CONCLUSIONS
Sparsity and quantization are appealing tools for resource-efficient
DNN design. However, it is challenging to incorporate sparsity into
quantization and convert it to practical benefits.We have introduced
a novel methodology to form bit sparsity patterns in quantization-
aware training and reap the full advantages of sparsity and quanti-
zation while reserving better DNN accuracy. Proposed quantization
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Figure 8: Analyzation of the bit sparsity pattern on INT8.

with the bit sparsity pattern allows the design of LUT-based PEs
to replace multiplication with minimally modified existing hard-
ware platforms, thus delivering remarkable performance benefits.
Our evaluation shows that the proposed EBSP scheme outperforms
other similar schemes in performance, energy or accuracy.
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